

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	

CHEMISTRY 9701/31

Paper 3 Advanced Practical Skills 1

May/June 2019

2 hours

Candidates answer on the Question Paper.

Additional Materials: As listed in the Confidential Instructions

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name on all the work you hand in.

Give details of the practical session and laboratory where appropriate, in the boxes provided.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

Use of a Data Booklet is unnecessary.

Qualitative Analysis Notes are printed on pages 10 and 11.

A copy of the Periodic Table is printed on page 12.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

Session
Laboratory

For Examiner's Use	
1	
2	
3	
Total	

This document consists of 12 printed pages.

Quantitative Analysis

Read through the whole method before starting any practical work. Where appropriate, prepare a table for your results in the space provided.

Show your working and appropriate significant figures in the final answer to **each** step of your calculations.

1 Metal carbonates react with acid to produce carbon dioxide. You will determine the identity of a Group 2 metal **M** in a carbonate of formula **M**CO₃ by reacting the carbonate with excess dilute hydrochloric acid and measuring the volume of carbon dioxide produced.

$$MCO_3(s) + 2HCl(aq) \rightarrow MCl_2(aq) + CO_2(g) + H_2O(l)$$

FA 1 is 50 cm³ of 4.00 mol dm⁻³ hydrochloric acid, HC*l*. **FA 2** is the metal carbonate, **M**CO₃.

(a) Method

- Fill the tub with water to a depth of approximately 5 cm.
- Fill the 250 cm³ measuring cylinder **completely** with water. Hold a piece of paper towel firmly over the top, invert the measuring cylinder and place it in the water in the tub.
- Remove the paper towel and clamp the inverted measuring cylinder so the open end is in the water just above the base of the tub.
- Add all the FA 1 into the flask labelled X.
- Check that the bung fits tightly into the neck of flask **X**, clamp flask **X** and place the end of the delivery tube into the inverted 250 cm³ measuring cylinder.
- Weigh the container with **FA 2** and record the mass.
- Remove the bung from the neck of the flask. Tip the FA 2, from the container, into the acid
 in the flask and replace the bung immediately. Remove the flask from the clamp and swirl
 it to mix the contents.
- Replace the flask in the clamp. Leave for several minutes, swirling the flask occasionally.

You may wish to start Question 2 while the gas is being evolved.

- When no more gas is collected, measure and record the final volume of gas in the measuring cylinder.
- Weigh the container, with any residual FA 2, and record the mass.
- Calculate and record the mass of FA 2 added to flask X.

Results

(i)	Calculate the number of moles of carbon dioxide collected in the measuring cylinder. [Assume that 1 mol of gas occupies 24.0 dm³ under these conditions.]
	moles of $CO_2 = \dots mol$ [1]
(ii)	Use your answer to (b)(i) and the information on page 2 to calculate the relative atomic mass, $A_{\rm r}$, of ${\bf M}$.
<i>a</i>	A_{r} of $\mathbf{M} = \dots$ [3]
(iii)	Use your answer to (b)(ii) to identify M .
	M is [1]
(c) (i)	A student suggested that, using the same apparatus, the accuracy of the experiment would be increased if approximately 2g of ${\rm MCO_3}$ were used to react with the excess hydrochloric acid.
	State and explain whether the student was correct.
	[1]
(ii)	Another student suggested that the experiment would be more accurate if the carbon dioxide was collected in a gas syringe rather than over water.
	State and explain whether the student was correct.
	[1]
	[Total: 10]

2 In **Question 1** you measured the volume of carbon dioxide produced by a metal carbonate, **M**CO₃, in order to identify **M**. In **Question 2** you will identify another Group 2 metal, **Q**, by using a gravimetric method.

When Group 2 carbonates are heated they decompose.

$$QCO_3(s) \rightarrow QO(s) + CO_2(g)$$

FA 3 is the metal carbonate, **Q**CO₃.

(a) Method

- Weigh the crucible with its lid and record the mass.
- Add between 1.30 g and 1.50 g of FA 3 into the crucible. Record the mass of crucible, lid and FA 3.
- Place the crucible on the pipe-clay triangle on the tripod. Put the lid on the crucible and heat gently for approximately 1 minute.
- Use tongs to remove the lid and heat the crucible strongly for approximately 5 minutes. Replace the lid and then leave to cool.
- While the crucible is cooling, begin work on **Question 3**.
- When cool, reweigh the crucible with its lid and contents. Record the mass.
- Calculate and record the mass of FA 3 placed in the crucible.
- Calculate and record the mass of residue left after heating.

Keep the crucible and its contents for use in Question 3(b).

Results

I II III IV

[4]

	(i)	Calculate the number of moles of carbon dioxide produced during heating of FA 3.
		moles CO ₂ = mol [1]
	(ii)	Use the mass of FA 3 in (a) and your answer to (b)(i) to calculate the relative atomic mass, A_r , of Q and hence identify Q . You should assume complete decomposition of Q CO ₃ .
		A _r of Q is
		Q is[4]
(c)	Exp	plain why the lid was placed on the crucible when the residue was left to cool.
		[1]

In order to decompose Group 2 carbonates, the solid must be heated strongly. In this experiment ${\bf QCO}_3$ was heated for a few minutes.		
nsure that decomposition was		
[1]		
sition of Q CO ₃ was complete. complete.		
[1]		
and assumed that it was all		
on the calculated value of the		
[1]		
due, Q O, rather than the mass		
[1]		
[Total: 14]		

Qualitative Analysis

Where reagents are selected for use in a test, the **name** or **correct formula** of the element or compound must be given.

At each stage of any test you are to record details of the following:

- colour changes seen;
- the formation of any precipitate and its solubility in an excess of the reagent added;
- the formation of any gas and its identification by a suitable test.

You should indicate clearly at what stage in a test a change occurs.

If any solution is warmed, a **boiling tube** must be used.

Rinse and reuse test-tubes and boiling tubes where possible.

No additional tests for ions present should be attempted.

- 3 (a) FA 4 and FA 5 are aqueous solutions each containing one anion and one cation.
 - (i) Carry out the following tests and record your observations. For each test use a 1 cm depth of **FA 4** or **FA 5** in a test-tube.

test observations		ervations
test	FA 4	FA 5
Add a 1 cm depth of dilute hydrochloric acid. Leave to stand.		
Add a 1 cm depth of aqueous copper(II) sulfate. Leave to stand.		
Add a few drops of aqueous silver nitrate, then		
add aqueous ammonia.		
Add a 1 cm depth of aqueous chlorine, then		
add a 1 cm depth of FA 5 .		

(ii)	From your observations in (a)(i) identify one of the ions present in either FA 4 or FA 5.		
	Ion present in is		
(iii)	Apart from the reaction with FA 5 suggest a test that could be used to identify the coloure product formed in the reaction between aqueous chlorine and FA 4 . You should includ the reagent used and the expected observation.		
	Do not carry out this test.		
	reagent		
	expected observation[1		
(b) (i)	Place the cooled crucible and residue from Question 2 onto a heatproof mat and ad approximately 5 cm³ of water.		
	Test the solution with litmus papers. Record your observations.		
(ii)	Using Q O as the formula of the residue, write the equation for the reaction with water the occurs in (b)(i) . Include state symbols.		
	[1]		

		9
(c)	In C	Questions 1 and 2 you identified the Group 2 metals present in MCO ₃ and QCO ₃ .
		will now plan and carry out tests to confirm, or not confirm, the identities of $\bf M$ and $\bf Q$. Both and $\bf Q$ are listed in the Qualitative Analysis Notes.
	(i)	Group 2 carbonates are insoluble in water. In order to test for the cations present (\mathbf{M}^{2+} and \mathbf{Q}^{2+}) they must be in solution.
		Name a reagent you could use to prepare solutions of the cations from solid samples of $\mathbf{MCO_3}$ and $\mathbf{QCO_3}.$
		[1]
	(ii)	You are provided with the following solutions. FA 6 contains M ²⁺ (aq). FA 7 contains Q ²⁺ (aq).
		Choose reagents that could be used to confirm the identity of M and Q . Carry out the tests. Record the tests, observations and conclusions.

		[5]
(iii)	Do your conclusions confirm your identification of M and Q in Questions 1 and 2 ? Explain your answer.	
		[1]
	[Total:	16]

Qualitative Analysis Notes

1 Reactions of aqueous cations

in n	reaction with									
ion	NaOH(aq)	NH ₃ (aq)								
aluminium, Al³+(aq)	white ppt. soluble in excess	white ppt. insoluble in excess								
ammonium, NH ₄ +(aq)	no ppt. ammonia produced on heating	_								
barium, Ba ²⁺ (aq)	faint white ppt. is nearly always observed unless reagents are pure	no ppt.								
calcium, Ca ²⁺ (aq)	white ppt. with high [Ca ²⁺ (aq)]	no ppt.								
chromium(III), Cr³+(aq)	grey-green ppt. soluble in excess	grey-green ppt. insoluble in excess								
copper(II), Cu ²⁺ (aq)	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution								
iron(II), Fe²+(aq)	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess								
iron(III), Fe³+(aq)	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess								
magnesium, Mg²+(aq)	white ppt. insoluble in excess	white ppt. insoluble in excess								
manganese(II), Mn²+(aq)	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess								
zinc, Zn²+(aq)	white ppt. soluble in excess	white ppt. soluble in excess								

2 Reactions of anions

ion	reaction
carbonate, CO ₃ ²⁻	CO ₂ liberated by dilute acids
chloride, C <i>l</i> ⁻ (aq)	gives white ppt. with Ag ⁺ (aq) (soluble in NH ₃ (aq))
bromide, Br ⁻ (aq)	gives cream ppt. with Ag ⁺ (aq) (partially soluble in NH ₃ (aq))
iodide, I ⁻ (aq)	gives yellow ppt. with Ag ⁺ (aq) (insoluble in NH ₃ (aq))
nitrate, NO ₃ ⁻ (aq)	NH ₃ liberated on heating with OH ⁻ (aq) and A <i>l</i> foil
nitrite, NO ₂ ⁻ (aq)	NH ₃ liberated on heating with OH ⁻ (aq) and A <i>l</i> foil
sulfate, SO ₄ ²⁻ (aq)	gives white ppt. with Ba ²⁺ (aq) (insoluble in excess dilute strong acids)
sulfite, SO ₃ ²⁻ (aq)	gives white ppt. with Ba ²⁺ (aq) (soluble in excess dilute strong acids)

3 Tests for gases

gas	test and test result
ammonia, NH ₃	turns damp red litmus paper blue
carbon dioxide, CO ₂	gives a white ppt. with limewater (ppt. dissolves with excess CO ₂)
chlorine, Cl ₂	bleaches damp litmus paper
hydrogen, H ₂	'pops' with a lighted splint
oxygen, O ₂	relights a glowing splint

The Periodic Table of Elements

	18	² He	helium 4.0	10	Ne	neon 20.2	18	Ā	argon 39.9	36	호	krypton 83.8	54	Xe	xenon 131.3	98	Rn	radon -				
	17					fluorine 19.0			chlorine 35.5									astatine -				
																			9	>	orium	
	16			8	0	охуд	16	<u></u>	sulfur 32.1	34	Š	seleni 79.	52	<u>"</u>	telluri 127	84	<u> </u>	poloni	116	<u></u>	livermorium	
	15			7	Z	nitrogen 14.0	15	۵	phosphorus 31.0	33	As	arsenic 74.9	51	Sp	antimony 121.8	83	<u>B</u>	bismuth 209.0				
	14			9	O	carbon 12.0	14	S	silicon 28.1	32	Ge	germanium 72.6	20	Sn	tin 118.7	82	Pb	lead 207.2	114	Εl	flerovium	
	13			2	В	boron 10.8	13	Αl	aluminium 27.0	31	Ga	gallium 69.7	49	In	indium 114.8	81	11	thallium 204.4				
									12	30	Zn	zinc 65.4	48	g	cadmium 112.4	80	Ρ̈́	mercury 200.6	112	ပ်	opernicium -	
									11	29	Cn	copper 63.5	47	Ag	silver 107.9	79	Au	gold 197.0	111	Rg	oentgenium -	
d								10						palladium 106.4						E		
Group									6	27	ပိ	cobalt 58.9	45	뫈	rhodium 102.9	77	I.	iridium 192.2	109	¥	meitnerium c	
		- T	hydrogen 1.0						80	26	Pe	iron 55.8	44	Ru	ruthenium 101.1	92	SO	osmium 190.2	108	£	hassium	
				J					7	25	M	manganese 54.9	43	ည	technetium -	75	Re	rhenium 186.2	107	뮵	bohrium	
	2			_				9	24	ပ်	chromium 52.0	42	Мо	nolybdenum 95.9	74	>	tungsten 183.8	106	Sg	eaborgium	_	
		Key	atomic number	atomic symbo	name relative atomic mass			2						niobium 92.9								
				ator	atom	relative			4	22	F	titanium ,	40	Zr	zirconium 91.2	72	Έ	hafnium 178.5	104	Ŗ	utherfordium -	
									က	21	Sc	scandium 45.0	39	>	yttrium 88.9	57-71	inthanoids		89–103	actinoids		
	2			4	Be	mnillinm 9.0	12	Mg	nagnesium 24.3								_	parium 137.3			adium	
	_					lithium be			sodium mag													
				8	_	lithi.	=	Z	sodi 23.	15		potas:	3.	₩	rubid 85.	5,	Ö	caes 132	.8	Щ	franc	

7.1	ŋ	lutetium 175.0	103	۲	lawrencium	ı	
70	Yb	ytterbium 173.1	102	Š	nobelium	ı	
69	T	thulium 168.9	101	Md	mendelevium	ı	
89	ш	erbium 167.3	100	Fm	fermium	ı	
29	유	holmium 164.9	66	Es	einsteinium	ı	
99	Δ	dysprosium 162.5	86	Ç	californium	ı	
65	Д	terbium 158.9	26	Ř	berkelium	ı	
64	В	gadolinium 157.3	96	Cm	curium	ı	
63	En	europium 152.0	92	Am	americium	ı	
62	Sm	samarium 150.4	94	Pu	plutonium	ı	
61	Pm	promethium —	93	ď	neptunium	ı	
09	pN	neodymium 144.4	92	\supset	uranium	238.0	
59	Ą	praseodymium 140.9	91	Ра	protactinium	231.0	
58	Ö	cerium 140.1	06	T	thorium	232.0	
22	Га	lanthanum 138.9	88	Ac	actinium	ı	

lanthanoids

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.